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Abstract~Using the alternating method and the complex function technique of Muskhelishvili the
stress field is obtained for a scalloped disk with noncentral holes. Based on this stress field an
axisymmetric substitute structure is devised which allows for the determination of the stress con
centration factors at holes and scallops without need for a 3-dimensional calculation. The method
makes axisymmetric Finite Element calculations of large, predominantly axisymmetric structures
such as aircraft engine compressor and turbine disks, in which the non-axisymmetric disturbances
are modelled by axisymmetric elements with different material parameters, particularly attractive.
© 1997 Elsevier Science Ltd.

1. INTRODUCTION

In aircraft engine applications one frequently encounters large predominantly axisymmetric
structures with local non-axisymmetric disturbances. This situation leads to a difficult
dilemma. On the one hand, it is very attractive to perform a 2-dimensional axisymmetric
calculation thus avoiding an expensive 3-dimensional analysis. On the other hand, dis
turbances usually produce stress concentrations which are often very important in sub
sequent damage calculations. In previous articles (Kohl et al., 1996), an axisymmetric
substitute structure was developed which allows for an accurate determination of the
concentrated stress at holes. In the present article, the case of a scalloped disk is looked at.
Scallops (Fig. 1) are frequently introduced in thin rings with bolt holes to decrease the
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Fig. I. Scalloped disk with noncentral holes.
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stress at the holes. The axisymmetric substitute structure developed yields the local stress
at the scallops and the holes.

The first sections of the article deal with the determination of the stress field in the
scalloped disk with noncentral holes. The alternating method is used since it is very well
suited to analyse topologically similar structures quickly without the need for remeshing
like in the Finite Element Method. To this end the stress field outside a scalloped hole in
infinite space is developed using a conformal mapping technique (Grassmann, 1979) and
the complex function theory of Muskhelishvili (1953). A comparison with a Finite Element
Calculation shows good agreement. Finally, a suitable axisymmetric substitute structure is
developed and the appropriate parameters are determined.

2. ITERATIVE CALCULATION OF STRESSES IN SCALLOPED DISKS WITH
NONCENTRAL HOLES

In order to find the stresses in a scalloped disk with noncentral holes subject to
centrifugal forces and outer pressure (Fig. I), the so-called alternating technique will be
applied. The basic idea of this method is to find a solution to the governing equations at
stake satisfying only part of the boundary conditions. This should be an easier task than
the original one. Next, another solution to the governing equations is superimposed making
sure that the boundary conditions which were not yet satisfied are fulfilled. However, this
latter solution usually destroys the fulfilment of the boundary conditions which were
satisfied by the first solution. So the first solution must be applied again. This procedure is
repeated until a convergent solution is obtained. It is often advantageous to alternate more
than two solutions.

For the scalloped disk with noncentral holes the solution of the disk without holes and
scallops subject to centrifugal forces and outer pressure will be taken as the starting solution.
Analytical expressions for this starting solution are given by Timoshenko (1970).

At this point the first iteration starts. The starting solution leads to stresses on the
surface of the noncentral holes. Since these should be stress-free, the inverse stress must be
applied. For the determination of the stress fields in the disk due to the application of the
inverse stresses at just one hole, the solution of the hole problem in infinite space with
arbitrary loading, given by Muskhelishvili (Muskhelishvili, 1953, Kohl et al., 1996) is taken.
Application of this solution to the first noncentral hole frees this hole from all stress.
However, it leads to additional stresses at all other noncentral holes and at the inner and
outer boundary of the disk. This procedure is repeated for all noncentral holes. At this
stage the boundary conditions at the inner surface, which are not satisfied due to the
noncentral hole stress fields and the starting solution in the scallops, are restored by
superimposing the stresses around a scalloped boundary in infinite space loaded by the
inverse stress fields. The solution to this problem is derived in Sections 4-6 of the present
article. Finally, the outer surface is freed from the noncentral holes and scalloped boundary
stress fields. The solution to this problem was obtained by Muskhelishvili (1953) and is
reproduced in Section 3. At this point the second iteration can start. This procedure is
repeated until convergence for the stress fields is reached.

3. SOLUTION TO THE PROBLEM OF A CIRCULAR DISK WITH ARBITRARY LOADING

The center of the coordinate axes coincides with the center of the disk and an arbitrary
point is denoted by the complex number z = x+iy. R is the radius of the disk and e the
counter clockwise angular coordinate. Let (t,(e), tie» be the stress vector at position e,
and let the resultant force defined by

(1)
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where 8 = 0 is some position along the boundary, be expressed in a Fourier series

X!

II (8) + if2 (8) = L Aneino
-X!

then the stress field at z, an arbitrary point inside the disk, satisfies:

O"xx+O"yy = 2[«1>(z) + «1>(z)]

O"yy - O"xx +2iO"xy = 2[z«1>'(z) + 'P(z)]

2845

(2)

(3)

where «1> and 'P are two potentials, ' denotes the derivative with respect to z and a bar
denotes the complex conjugate. The potentials take the form (Muskhelishvili, 1953):

where

and

d¢
«1>(z) =

dz

'P(z) = dljJ(z)
dz

X!

¢(z) = Lad
k~1

X!

ljJ(z) = L bkzk
k=O

An
a =- n~2

n Rn'

bn = A_n _ (n+2)An+ 2
, n ~ o.

R n R n

(4)

(5)

(6)

(7)

(8)

(9)

(10)

4. CONFORMAL MAPPING FOR A SCALLOPED BOUNDARY

The problem of finding the stress field in infinite space due to an arbitrary loading
along a scalloped hole will be found by mapping the space around the scalloped hole onto
the inside of the unit circle. Taking the smallest radius along the scalloped hole as the unit
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Fig. 2. Mapping the exterior of a scalloped hole in infinite space into the unit circle.
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of length [L] and applying the inverse transformation

1
~=-

Z
(11 )

maps the exterior of the scalloped hole into the unit circle E (Fig. 2). To map the latter
domain onto E, Grassmann (1979) has described a suitable mapping algorithm using the
method of successive approximation. His algorithm consists of three routines, the circle
routine, the ray routine and the Koebe routine, of which only the first one will be needed
here. Repeated application of the routines produces a domain more and more similar to E.
Assume the boundary of the domain to be mapped is defined by n boundary points
Z I' ... , Zn E C, in counter clockwise direction. Let Zj (Fig. 3) be such that

(12)

and the preceding point be expressed by Zi_1 (set Zj_1 = Zn for i = 1).
Defining Fj: = (Zj- Zj)/(Zj-Zi_l), let m be such that

1m [F;"/IF;"I] : =!Uin {1m [Fj/IFjl]}
J- I.. ...n

i#i
j#i-I

(13)

where 1m denotes the imaginary part. Then, using the abbreviation A: =F;"IIF;"I ,

(14)

and

(15)

are radius and center, respectively, of a circle Kk passing through Zj and Zi-l and one more
of the boundary points without intersecting the domain at stake, i.e., either E (1 K k or E\Kk

can be chopped off (Re denotes the real part of a complex argument, the index k denotes
the iteration). In the present application E (1 Kk will be chopped off. To this end the domain
is first rotated so that the center of K k lies on the real axis with the part to be chopped off
on the left. This is performed by the transformation

(16)
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Fig. 3. Conformal transformation Tk(z) of one scallop.
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where

(17)

sgn denotes the sign of a real number. If K k intersects the unit circle in two distinct points
these take the form Zlk and 'Zlk where

(18)

(19)

C: = Ck ' D k • In our application this is the case. If this condition is not satisfied the ray and
Koebe routine must be taken. This generally occurs when the domain exhibits deep inlets
with locally small radii of curvature. E\Kk is mapped onto a wedge shape by

(20)
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* A _ Zi -Zlk

k - * Z 'Zi - lk
(21)

zf = Zi' D k (Fig. 3). The angle 1h of the wedge satisfies

(22)

arg denotes the argument of a complex number. Finally the wedge shape is mapped onto
the unit circle by

(23)

where

(24)

(25)

The complete mapping Tk is obtained by combining eqns (16), (20) and (23):

(26)

In general, several such mappings (characterized by the index k) will be needed to obtain a
satisfactory approximation of the unit circle.

In what follows the inverse transformation will be needed:

(27)

where

(28)

(29)

(30)

Note that hi: 1 has a branch point for a zero numerator and a zero denominator, i.e., for

(31)

and

(32)
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Both branch points lie on the unit circle. Repeated application of the above algorithm
finally leads to the conformal mapping w(O:

(33)

The exponent - I finds its origin in eqn (11). For the geometry in Fig. I only one trans
formation per scallop was needed to yield satisfactory results. The complete conformal
mapping is shown in Fig. 4, where iso-I'! and iso-(argO lines are shown. Although the
geometry deviates slightly from the original design for Izl = 1, the critical areas ahead of
the scallops are very well matched. Figure 5 shows the location of the branch points for a
geometry with 24 scallops.
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5. SOLUTION FOR THE POTENTIAL FUNCTIONS

In carthesian coordinates the stresses can be expressed in terms of potential functions
rjJ(z) and ljJ(z) by egns (3)-(5). The boundary conditions reduce to (Muskhelishvili, 1953):

where

rjJ(z) +z<D(z) + ljJ(z) = if+constant (34)

(35)

s is an arc coordinate along the boundary and (lx, ty ) are the stress components in carthesian
coordinates. If a conformal mapping is used rjJ(z) and ljJ(z) are expressed as a function of
(, i.e. (Chiu and Gao, 1993):

rjJ(O = rjJ(w- 1 (z))

1jJ(0 = ljJ(w- 1(z)).

(36)

(37)

For convenience the same symbols for the complex potentials in the (-plane are used. Now
egns (3)-(5) are transformed into:

<D(O = drjJ(z) = _1_ drjJ(O
dz w'(() d(

where

d

de
The boundary condition (34) is transformed into

(38)

(39)

(40)

(41)

(42)

(43)

where ( = (J was written on the boundary. In the present application the (-domain is E and
its boundary is the unit circle. The solution rjJ(O and 1jJ(() will be assumed to be holomorphic
for 1(1 < 1 and continuous up to 1(1 = 1. Then functions rjJ*(() and 1jJ*(0 can be defined
which are hoiomorphic for 1(1 > 1 and continuous up to 1(1 = I by:

(44)
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and similarly for 1jJ. Since on the unit circle

I
{j =-.

a

Equation (43) can be rewritten in the form

2851

(45)

(46)

The right hand side was expanded in a Fourier series (on the unit circle the Laurent series
expansion and Fourier series expansion coincide since a = eiO

). Now a theorem states that
if a function A(O is holomorphic for 1(1 < 1, if B(O is holomorphic for 1(1 > 1 (including
the point at infinity), if both functions are continuous up to 1(1 = 1 and if

A(O +B(O = 0,1(1 = 1 (47)

then A(O = constant = -B(O (Muskhelishvili, 1953).
Applying this to eqn (46) it is clear from the above that the first term on the left hand

side and the last term on the right hand side are holomorphic for 1(1 < 1 whereas the last
term on the left hand side and the first term on the right hand side are holomorphic for
1(1 > 1. The second term on the left hand side is a mixed term. Moreover, it contains the
derivation of the conformal mapping, which is not continuous on 1(1 = 1.

This problem is resolved by assuming that ¢'(a) removes the discontinuity in Ijw'(a).
This is a reasonable assumption, since these are the only terms in eqn (46) for which a
discontinuity on 1(1 = 1 occurs (or can occur). The folIowing expansion is proposed:

(48)

Note that the lowest order term is quadratic in order to ensure the right asymptotic
behaviour for ( ~ O. Indeed, since

(49)

(the exterior of the scalIoped boundary is mapped onto the interior of the unit circle) one
obtains

(50)

This ensures the right far field behaviour for the stresses. Equation (48) leads to:

(51)
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(52)

is obtained by an ordinary Fourier expansion. Using eqn (48) again, the second term in
eqn (46) yields

where Ckm is obtained by the following Fourier expansion:

oc

w(a)a- 1
-

m = L: Ckm ak .
k~ - oc

(53)

(54)

Substitution of eqns (51) and (53) into eqn (46) and splitting the contributions which are
holomorphic for ''I < 1 and 1'1 > I yields:

00 IX;

L bmdkm + L bmCkm =ak k= 1,2,3, ...
m=l m=l

(55)

(56)

Equation (55) represents a linear set of infinitely many equations. Taking the first n
equations yields bl> b2, ... bn- Substituting this set into eqns (48) and (56) yields <1>(0 and
l/J(O. The stresses are obtained by eqns (39)-(41).

6. APPLICATION

The alternating method using the solutions of the preceding sections was applied to
the disk with scallops and holes in Fig. 6. The inner radius was taken as the unit of length.
The material and loading data correspond to typical data for a titanium alloy compressor
part at take-off. The stresses are scaled by the hoop stress at the inner radius of a disk with
similar dimensions as the original structure but without holes and scallops, subject to
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centrifugal loading only. Figure 7 shows the hoop stress ahead of the scallops for several
iterations. r o denotes the outer radius, r is the radial coordinate and rl2 is the maximum
value of r along a scallop. It is observed that the method converges slowly towards a limit
function. The slow convergence can be explained by the small thickness of the disk: the
several solutions used in the alternating method have little space at their disposal to die
out, i.e. there is a lot of interaction between the holes, scallops and outer boundary.

Table 1 shows the stresses computed by the alternating method (AM) at selected
locations indicated in Fig. 6, together with the deviation b from Finite Element results (FE)
defined as

b = (J(AM) - (J(FE) (%)
(J<psc(FE)

(57)

Po is the outer pressure. The inner pressure Pi was assumed to be zero. O'<p at the outside
boundary denotes the mean value of the hoop stress along the boundary. The Finite
Element results were obtained by using the commercial Finite Element program ABAQUS.
Due to symmetry conditions only a segment of the disk enclosing an angle of n/24 was
modelled, using 8-node isoparametric elements. A coarse mesh containing 96 elements and
a fine mesh containing 184 elements were generated. Comparison of the stresses in the fine
and coarse model yielded deviations below 1%. For the comparison with the alternating
method the fine mesh results were used.

There is a good correspondence between the FE and AM results, especially for high
stress values. The alternating method yields the advantage that geometrical changes can be
quickly taken into account without the need for remeshing. This will generally outweigh
the slow convergence noticed in the present example. Indeed, computer cost is very low,
i.e., it does not require much cost and effort to include a few more iterations. On the other
hand, remeshing frequently involves expensive engineering time. Furthermore, it is expected
that convergence is substantially faster for structures which are not so thin.

Table I. Stresses at selected locations

SC ID RAD OD Outside boundary

Po (J~ b (J. " (J, b (J, b (j. b
[MPaj [-j [%j [-] [%j [-j [%j [-j [%j [-j [%j

0 3.714 0.1 0.790 2.6 -0.355 -0.2 1.722 -0.8 1.333 -1.6
20 2.342 3.0 0.488 3.0 -0.249 -1.8 1.061 -1.5 0.817 -1.4
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7. AXISYMMETRIC SUBSTITUTE STRUCTURE

The scalloped region in Fig. 1 is generally a part of a larger structure, e.g., an aircraft
engine compressor containing several stages. The inherent axisymmetry of such structures
is usually only locally disturbed by, e.g., holes, scallops or blades. It is therefore natural to
investigate whether an expensive three-dimensional calculation can be avoided by replacing
the disturbances by axisymmetric substitute structures. In this way the stresses in the
original structure can be determined by means of a relatively cheap two-dimensional
axisymmetric calculation. The stress concentrations at the local disturbances are taken into
account by appropriate stress concentration factors.

For the scalloped disk of Fig. 1 a substitute structure consisting of two rings (Fig. 8)
is proposed, in which the scalloped area in the original structure is substituted by an inner
ring with a different density and E-modulus. These parameters are determined so that they
yield the same radial displacement and radial stress or equivalently the same radial and
hoop stress at the outer boundary '0 due to the given load as in the original structure, i.e.,
the far field solution in the original and substitute structure is the same. The outer boundary
is assumed to be far enough from the scalloped area so that no shear stresses occur at

,= '0'
Assume the stresses were calculated in the original structure for a given We and Pm i.e.,

at, = '0 the hoop stress (Jt02 and radial stress (Jro2 = -Po were obtained. "0" denotes the
outer boundary of a ring, "i" the inner boundary. (J'o2 is linear in w; and Po (Pi = 0).

(58)

Using (Jro2 and (Jto2 as boundary conditions for the substitute structure the stresses and
radial displacement on the inside of ring 2 can be determined (Kohl et al., 1996) :

(59)

(61)
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Equations (59) and (61) exhibit again a linear relationship in w; and Po:

The boundary conditions between ring 1 and 2 amount to :

(Jrol = (Jri2

2855

(62)

(63)

(64)

(65)

On the other hand, the knowledge of O"ro], O"nl = Pi = 0 and We allows for the calculation of
Uol using the material data of ring 1. Reordering this relationship yields a linear equation
in E I and PI:

(66)

Substitution of eqns (62)-(65) into eqn (66) yields a relationship of the form:

(67)

In the above derivation all quantities Q i and hi are load independent (they depend on the
geometry and material constants only). Equation (67) is the relation which has to be
satisfied by the material parameters E I and PI of the substitute structure in order to get the
same far field solution (0""'2 and 0"1(2) as in the original structure, both structures being
loaded by We and PO' It is a linear equation in the two unknowns E I and PI and can be
satisfied in infinitely many ways for given We and PO' However, if E I and PI are to be load
independent, both the coefficients of w; and Po must vanish. This leads to a set of two
equations in the two unknowns E[ and PI :

(68)

This means that it is generally possible to find an E[ and PI so that the required equivalence
between the original and substitute structure at r = r o is always satisfied, independent of
the loading (we and Po)! In practice, calculations are made for two different loadings leading
to two equations of the form (66) from which PI and E} are determined.

In this way the scallops and holes of the structure in Fig. 1 are replaced by an
axisymmetric substitute structure. Although the substitute structure was designed so that
the stress and displacement fields are not changed far enough away, they clearly are very
different close to the disturbances. Since disturbances frequently lead to stress con
centrations it is still very important to get a precise idea of the stress field in adjacent areas
such as the ones indicated by SC, 00, RAD and 10 in Fig. 6. This will be achieved by
establishing a relationship between these concentrated stresses and the stresses obtained in
the substitute structure at a location adjacent to the strongest disturbance, i.e., O"ri2 and 0"Ii2

in the present case. The concentrated stresses O"e in the original structure satisfy an equation
of the form

(69)
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Table 2. Stress concentration factors at selected
locations

K{ K,

(iq>sc 2.58 -3.14
(T.pID 0.55 0.005
(JepOD 1.22 0.17
(JrRAD -0.225 1.92

whereas eqn (60) yields

(70)

Together with eqn (62), eqn (70) leads to

(71)

(72)

Substitution in eqn (69) yields

(73)

So there is a linear relationship between the concentrated stress in the original structure
and the stresses (J'i2 and (Jri2 in the substitute structure. Since all quantities a6 . .. b9 are load
independent, K, and K r do not depend on the load either. In practice, the coefficients in eqn
(73) are determined by performing a stress calculation for two different loadings and solving
the resultant set of equations.

For the structure in Fig. 6, El/E = 0.153 and PI/P = 0.52 was found, i.e., the mass in
the scalloped ring is reduced by 2 and the stiffness by 6. The stress concentration factors at
several positions are summarized in Table 2. These factors allow for the calculation of the
concentrated stresses for an arbitrary loading based on the stresses (J1/2 and (J,i2 in the
substitute structure.

8. CONCLUSIONS

By means of the alternating method the stress fields in a scalloped disk with noncentral
holes were obtained. A comparison with Finite Element results showed good agreement.
An axisymmetric substitute structure allows for an axisymmetric treatment of large pre
dominantly axisymmetric structures with local disturbances while retaining good accuracy
for the concentrated stresses adjacent to the disturbances.
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